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Abstract
Purpose – The CIM framework pursues the integration of components in a manufacturing enterprise by means of computer systems. This, however,
may be obstructed due to heterogeneity in the field: programmable controllers, robots, sensors and actuators, etc. in communications: different kinds of
networks and/or field buses; and in the programming tools for all these devices. Thus a solution is needed to integrate heterogeneous software/
hardware components in a well-defined and flexible fashion. This paper seeks to address these issues.
Design/methodology/approach – This paper proposes a metalanguage, called H, and a set of tools that serve for designing, implementing,
deploying, and debugging distributed heterogeneous software on the shopfloor. The metalanguange includes fault-tolerance and real-time
mechanisms, among other features.
Findings – The use of a framework that can integrate different software and hardware components enables the engineer to take advantage of the best
features of each existing technology. The use of object-oriented techniques, concurrent and distributed programming, and the isolation of
heterogeneous parts, have also important benefits in the reusability and optimality of the solutions.
Practical implications – The use of a metalanguage like H, that separates the parts of the application that depend on particular (heterogeneous)
components from the parts that are portable, has, as a main implication, important improvements in the development time, effort, and cost of CIM
projects.
Originality/value – H is the first metalanguage coping with heterogeneity through the complete development cycle of software for manufacturing
applications. It also provides a formal and well-defined framework for future extensions.
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Introduction

The CIM framework pursues the management of the total

manufacturing enterprise with the aid of computer systems, in

particular is relevant the use of software to integrate hardware

and software components in an application. Now-a-days, it is

commonly accepted that enterprise integration can be divided

into three levels: physical systems integration, application

integration, and business integration. According to Clements

(1997), physical systems integration copes with data exchange

among physical systems connected through a network,

application integration allows the management of systems

independently of where information resides, and finally

business integration deals with top-level monitoring and

control of processes.
However, this integration effort is often obstructed due to a

common and evident characteristic of modern production

systems: heterogeneity. Heterogeneity appears in different

areas within any factory. To begin with, a wide variety of
equipment can be found on the shopfloor: programmable

controllers, robots, AGVs, sensors and actuators, CNC
machinery, warehouses and material handling systems, and

so on. Also, communications inside the shopfloor and through
the whole enterprise may involve different kinds of networks
and/or fieldbuses. Finally, many of the elements must be

programmed, either with commercial-off-the-shelf (COTS)
solutions or in more general purpose languages (C, Cþþ

Java. . .). Moreover, the programming skills of the staff will
change depending on the complexity of their tasks, and all the
components of an application are subjected to changes as

technology evolves.
Software is a good starting point to cope with all this

heterogeneity. Programming languages are very close to the
root of the problem (since many components are
programmable) and the plasticity of software makes it well

situated to address it. However, approaching heterogeneity by
forcing the use of a single software paradigm or language for

integrating all the components is difficult to put in practice
due to the need of the equipment manufacturers to adhere to
it. It seems more appropriate to look for a solution that is able

to cope with existing developments. Also, this would produce
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better results than a common paradigm when confronted to

different needs and situations.
There are a number of CIM solutions for integrating

enterprise elements. Some of them, like CIMOSA, PERA,
GRAI, GERAM or ATHENA, deal with the integration in the

three aforementioned CIM levels. The CIM Open System
Architecture, or CIMOSA (1999, 2007) is an ESPRIT

supported framework that focuses specially on business
integration. PERA (2007), or Purdue Enterprise Reference
Architecture developed at Purdue University, provides a

model for the enterprise life cycle that has been applied to
paper mill, oil seeds processing, polyethylene plant industries,

etc. PERA claims that any enterprise can be vertically
separated into three different aspects (facilities, people, and

control and information systems), that can in turn be
horizontally divided into a set of eight phases in order to get

a valid model of the organization. The GRAI methodology
(Doumeingts and Vallespir, 1995) is a modeling technique
that provides a conceptual structure for representing the

enterprise, a formalism to express such conceptual
description, and tools to implement it. Generalised

Enterprise Reference Architecture and Methodology
(GERAM, 1999) is a framework defined by IFAC/IFIP

Task Force on Architectures for Enterprise Integration. It has
been constructed after analyzing some other architectural

approaches, and it is intended to be a generalized
architecture definition that can be applied through the
whole enterprise life cycle. Actually, CIMOSA, GRAI and

PERA are enterprise models that verify the GERAM
specification. Finally, a different approach, Advanced

Technologies for interoperability of Heterogeneous
Enterprise Networks and their applications (ATHENA,

2004), is a European commission supported project which
pursues that “by 2010, enterprises will be able to seamlessly
interoperate with others”. ATHENA mainly studies the

interoperability of applications, but also takes into account
business processes and the contexts.
From a lower level perspective, there exist CIM solutions

that cope with the physical and application CIM integration

levels, for example, Gþþ (Aarsten et al., 1995),
SEMATECH CIM (1998), and OSEFA (Schmid, 1995,

1996). They focus on the integration of a wide variety of
hardware, keeping in mind that this must be done by allowing
production flexibility. Though, the approach presented in this

paper also fits in this perspective, ours is an open solution that
also considers heterogeneity in software (unlike Gþþ which

uses only the JAVA and Cþþ programming languages and is
a commercial solution), being not tied to the MES philosophy

of SEMATECH. It is not only oriented to manufacturing
cells, as OSEFA.
There are other CIM solutions, nowadays mostly

concerned with robotic devices, related to the physical

integration level. Most of them are non-commercial
frameworks that facilitate the implementation of robotic/
machinery software. However, it must be said that, except for

OSACA, they are mainly aimed to research. Player/Stage
(Collett et al., 2005) is a good example of an open source

software tool that enables the control of mobile robots and
sensor devices, though it cannot be considered a complete

framework since the user must entirely develop the client-side
software. OROCOS (Flanders, 2005) provides a free-cost,
suitable set of pre-built libraries for machine tools and robotic

arm control. Some other open approaches are OSACA in

Europe, OSEC in Japan, and OMAC in the USA (Pritschow

et al., 2001), although none of them has been widely

adopted by industry. Our previous works, called NEXUS
(Fernández-Madrigal and González, 1999) and BABEL

(Fernández-Madrigal et al., 2007b), from which the solution

presented in this paper is derived, have demonstrated a higher
level of flexibility than these solutions in terms of lifecycle

phases covered, automatic generation of code, programming

languages, communications support, etc.
In this paper, we propose a new approach to cope with

heterogeneity and flexibility from the programming point of
view, aimed to produce software applications that adapt as

best as possible to the heterogeneous components of the shop-

floor. We claim that our approach covers both the physical
and the application CIM integration levels, since

interoperatibility among different elements and/or

applications on the shopfloor is achieved by means of a
common and transparent information exchange methodology.

As mentioned before, our approach is an evolution of previous

works on the same direction, but with a completely new
formalization and features for fault-tolerance and

communication frameworks. It consists of a simple and well

defined metalanguage, called H, for designing and
implementing distributed software modules (programs in

charge of controlling mechanisms) that can communicate

through different classes of networks. Each of these modules,
in turn, can define its functionality with a different

programming language in order to adapt to heterogeneity in
software. The H metalanguage includes concurrence, fault-

tolerance and real-time features to specify the different

requirements of the modules and hardware devices that
compose the application.
We have also provided H with a set of tools that cover all the

stages of the development lifecycle of the application. We have
been testing preliminary versions of the H and the H-tools in

the BABEL approach for robotic applications in our

automation research labs during the last ten years. In this
paper, we illustrate the new formalization with a case of study

of a CIM shopfloor application. The obtained results have

been promising, providing the engineer with a framework that
reduces the cost of development substantially while coping

with heterogeneous hardware and software with reduced
effort.
A comparative between our H metalanguage and tools and

some of the CIM solutions previously mentioned is offered in
Table I. This comparison covers the physical and application

CIM integration levels; the business level is excluded since

deals with high-level issues (decision making, simulations,
etc.) that, at this moment, are out of the scope of our

methodology.
The plan of the paper is as follows. In the next two sections,

we introduce the H metalanguage, describe the H tools, and

explicitly enumerate the real-time and fault-tolerance
characteristics of our approach. Then we present a case of

study on the shopfloor. Finally, some conclusions and an

outline of some future work in this area are provided.

The H metalanguage and the H tools

In this section, we outline our specification metalanguage for

the design and programming of heterogeneous applications,
called H (for “Heterogeneity”), and a set of tools that

produce, deploy, validate, and debug executable programs
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from those designs. For a more technical and detailed

specification of both you can consult (Fernández-Madrigal

et al., 2007a). H has been conceived for producing

codifications, even in different programming languages, of

distributed software with real-time and fault-tolerance

requirements. It has the following main features:
. heterogeneity enabled;
. distributed programming;
. concurrent programming;
. real-time;
. fault-tolerant;
. extensible; and
. validation/debugging enabled.

In H, an application is composed of a set of modules, being

each module executed on a single computational machine and

providing a number of public services to other modules.

During the design, the components of the application and its

requirements are separated conveniently into the

heterogeneous components and the portable ones. The

whole design can be divided into the following steps:
1 structural design of modules;
2 codification design of modules (programming);
3 enumeration of heterogeneous hardware/software

components that support the execution of the

codifications of step 2;
4 structural design of the application; and
5 definition of an implementation for the application.

Heterogeneity does not appear in step 1, which covers only

the public structure of modules. This allows the engineer to

reuse as much as possible these structures (since they do not

depend on any particular hardware or software). Examples of

structural designs for a CIM application can be seen in the

case of study section. One of the new features of H with

respect to our previous works is the inclusion of inheritance in

the design of the structure of modules, which improves even

more reusability by enabling the ordered modification of

existing modules, the composition of simpler designs into

more complex ones, and the definition of structures that are

intended only for derivation and not for instantiating any

codification (abstract modules).
A second feature intended for improving reusability is the use

of a data specification language aimed to write type definitions

and service parameters in the structural design. This language is

called HDL (for “Heterogeneous Data Language”), and it is a

subset of the OMG’s CORBA and IDL (2007a, b). All the

structural designs use the same language for defining data.
Finally, in the structural design, some real-time features can be

included, in particular the priority of services with respect to

other services in the samemodule. During the deployment of the

application, a priority is assigned to each module; thus, the final

absolute real-time priorities of services depend on both

specifications.
Step 2 is the first placewhere heterogeneity appears, although

it does weakly. Each codification is associated to the structural

design of a module (it “implements” that module). For

improving reusability and facilitating versioning, H includes a

new feature, inheritance, which allows the engineer to vary

existing codifications to produce new ones (for example,

because they are to be executed on a different hardware).
Module codifications follow an active object paradigm

(Brugali and Fayad, 2002), that is, from their perspective a

module is a program that contains an internal status and

provide some services (concurrently executed) and data

Table I Comparative table between H language and other relevant CIM solutions

Framework

Lifecycle

phases

covered

Automatic

generation of

code OS limitations

Programming

language

Communication

platform Real-time

Integration

levels

OROCOS Implementation,

testing

No Linux. Complete implementation

of the framework for other OSs

Cþþ CAN, CORBA

in progress

RTAI Physical

OSACA Implementation,

testing

No Win32, VxWorks. Complete

implementation of the framework

for other OSs

Cþþ TCP/IP None Physical

G11 Implementation,

testing

Yes Microsoft Windows NT

4.0/2000/XP/95/98/ME, OSF-Motif

for some UNIX environments

Cþþ JAVA CORBA-like and

MS D-COM-like

Yes Physical,

application

SEMATECH Design No NA NA NA NA Physical,

application

OSEFA Design No NA NA NA NA Physical,

application

H Design,

implementation,

testing, maintenance

Semiautomatic Win32, LynxOS, JAVA VM,

and no-OS. Only few modifications

for further OSs

C, Cþþ JAVA,

STEP-5. Only few

modifications for further

languages

ACE þ TAO CORBA,

TCP/IP, USB, and

monolithic.

Only few modifications

for further platforms

LynxOS RT

and

RTX support.

Only

few

modifications

for further

platforms

Physical,

application

Notes: NA – not applicable entries are related to some aspects of CIM solutions that are mainly oriented to design issues, and therefore do not explicitly
consider implementation features
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definitions to other modules. A codification includes the

programming sequences for each service and its real-time
characteristics (execution time). The services’ logics

are written in some programming language, which is the
main reason why we call H a “metalanguage”: it allows the

designer to cope efficiently with the existing heterogeneity in
programming. Figure 3 shows examples of codifications.
For keeping the codification of modules as portable and

reusable as possible (and heterogeneity as weak as possible at

that level), the programmer can use what we call “H atoms”:
macros that can be included within the codification of services

for carrying out some non-portable operations, for example,
requesting a service from another module. In Figure 3, some

examples of H atoms (in red) are shown. Although H atoms

cover a number of necessities, some portions of code may be
still dependent on a particular hardware/software component

(for example, a software library for mathematical processing
or a data acquisition card). These components must be

explicitly listed in a special section associated to the code,
called deportabilization. This encourages the programmer to

make heterogeneity explicit at the codification level.
Step 3 is devoted to enumerate the particular hardware and

software components involved in an application. This is where
heterogeneity is most widely coped with. We classify

heterogeneous components in general platforms: hardware,
execution, communications, real-time, and fault-tolerance.

Particular instances of these classes (called Particular
Platforms) represent the actual heterogeneous components

involved in the application, for example, a given operating
system or a concrete processing hardware. There is no limit in

the number of particular platforms that can be defined, which
is the main reason why our approach is highly extensible.
In step 4, an application structure is defined that includes a

number of modules (not codifications, since it is a structural

view of the application). The possibility of including more than
one copy of a givenmodule is a new feature of H with respect to

our previousworks: it allows the engineer to havemore than one
identical device where the module will run. An example of

application structure written in H is shown in Figure 4.
The last step (step 5) serves for defining an implementation,

that is, an instantiation of the structure of an application, in
order to produce executable programs. An example of

implementation in H is shown in Figure 4. Several
implementations of the same application structure can be

provided, for example, if there are changes in the distribution of
themodules among the computers, or in the hardware support.
In the implementation design, there must be specified the

support relations existing between particular platforms. For

example, a given computer can provide support for a given
operating system, which in turn can provide support for a

given processing library.
The optional fault-tolerance section is a new feature of H. It

allows the engineer to activate fault-tolerance mechanisms
through replication for each module, either active or passive.

A deployment section is intended to distribute the
codifications of the modules among the available execution/

hardware platforms. If a given codification is deployed more
than once (several replicas), H has provision for the following

cases of fault-tolerance:
. In passive replication, a replica number will define the

order in which the replicas will be selected for processing
requests. When the highest number ceases to respond

after a given timeout, the next one will take its place.

Whenever, the selected replica produces the result, its

internal status will be replicated in all of the others.
. In active replication, the replica number will be used to

index the output data produced by each replica. These

results will be merged/coordinated by the latest replica in

finishing the request.

Once all the steps of design have ended, the executable

programs that compose the implementation of the

application can be produced automatically. For that

purpose, the H tools include a software called H-apc, for

“Heterogeneous Application Constructor” that interprets the

designs described previously and generates source code for

the specified codification languages, execution/hardware

platforms (operating systems or CPUs), and a number of

compilers and interpreters. Currently we have a version of this

tool integrated into our previous visual CASE application of

the BABEL framework, called the BABEL module designer.

It includes support for codifications written in C, Cþþ JAVA,

and for execution platforms that include MS Windows NT þ

LynxOS, and JAVA VM. In the future we plan to extend the

list of platforms supported, which can be efficiently

accomplished due to the internal structure of the H-apc,

widely based on scripts.
For deploying and executing a given application, once it has

been constructed with H-apc and compiled/linked if needed,

we use another software, called H-apx (for Heterogeneous

APlication eXecutor), that is able to launch the programs on

their respective computational machines from a remote

station, and collect their logging information when that

option is activated. The list of deployments indicated in the

implementation also configures the relative priorities of the

codifications and their launching order.
If logging has been activated for some codification, the

results can be analyzed off-line through our H-apl

(Heterogeneous Application Logger), a software that shows

graphically the sequence of events that have occurred during

execution. This allows the engineers to inspect possible real-

time flaws or bad ordering of requests, apart from user-

defined events that can be registered at any time.
Finally, all the designs produced with H can be stored in

our BABEL web site (BABEL Homepage, 2007) for

versioning and maintenance. The site includes multi-user

privileged accesses, version support, and some validation

tools. For example, it is possible to examine a set of modules

to detect loops in their service requests or the impossibility of

satisfying the real-time requirements specified in the timing

keywords of codifications.

Real-time and fault-tolerance

In this section, we describe in more detail both the real-time

and fault-tolerance mechanisms enabled by H, since both are

relevant issues in CIM and process control.
H enables to integrate both hard real-time and soft or non-

real-time software into the same application through the use

of a set of optional features. For example, for a SCADA

system the monitoring software could provide a less stringent

real-time performance than the shopfloor control devices.

Thus, H allows the designer to include real-time requirements

as needed, both at module and service granularities.

Obviously, these requirements should only be specified if

the underlying execution and hardware platforms enumerated
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in the specification of the implementation of the application

support them (operating system, virtual machines, CPUs,

etc.). All real-time facilities described in the following are

included in the real-time class of particular platforms

(examples of these platforms are POSIX 1003.4

(Gallmeister, 1995), VenturCOM RTX (Ardence, 2005),

and many others, thus we capture heterogeneity in real-time

services):
. Hard real-time priorities for modules and services, in a

hierarchical fashion. Each service within a module may be

assigned a priority number relative to other services (there

is no bound on this priority numbers). Each module, in

turn, may be assigned a priority number relative to other

modules. The H-apx application is in charge of mapping

this priority specification to actual priorities of the

execution platforms (operating systems) that support the

modules, assuring the monotony of the selected priorities,

although not strictly[1]. In the case that such support is

not available (for example, a module implemented on an

on-line interpreter with no real-time performance),

evidently the design of the application will not fit the

intended requirements.
. Time requirements specification. In each service, an estimate

of its WCET (worst case of execution time) and BCET

(best case) can be provided. On the other hand, in each

service request specified with an H atom, a desired

requirement for the execution time of the request can

be set. This allows the designer to check out by simple

validation tools if the overall real-time requirements of the

application can be satisfied.
. Real-time scheduling and synchronization. An application

specified in H is inherently concurrent (and may be also

distributed). Services are the minimal unit of sequential

execution, thus they are tasks. For specifying their

scheduling, services can be of two basic types: reentrant

and non-reentrant. The former are those that can be

requested (and thus, executed) concurrently without other

limitations, thus they need synchronization mechanisms

(H provides some H atoms for synchronization, based on

the semaphore metaphor). The latter are services that

only are served when no other service is running. The

supporting software and hardware for guaranteeing

these simple requirements must be provided by some

real-time particular platform (an operating system, a

virtual machine, or a hardware such as a CPU).

In addition to these real-time specifications, H has provision

for the following cases of fault-tolerance:
. Passive replication. In the deployment of an

implementation of an application, a replica number will

define the order in which the replicas of a codification will

be selected for processing requests. When the highest

number replica ceases to respond after a given timeout,

the next one will take its place. Whenever, the selected

replica produces the result, its internal status will be

replicated in all of the others.
. Active replication. In this case, the replica number will be

used to index the output data produced by each replica.

Their results will be merged/coordinated by the latest

replica in finishing the request. No communication is

needed to replicate the status since all the replicas process

the same data; however a broadcast mechanism is needed

to send the request to all of them. Notice that active

replication is suitable for modules that do not request

services from other modules (or from theirselves), since in

other case all the replicas will issue the request, generating
a non proper operation. For modules that request services,

it is more suitable to use passive replication.

The fault-tolerance section of the implementation of an

application must include some fault-tolerance particular
platform for the replicated module, in order to provide the

necessary support for the replicas, mainly broadcast facilities
and result-merging algorithms.

A case of study

Figure 1 is a case of study of a simple industrial cell in charge
of classifying goods that are transported on a conveyor.

Its desired operation is as follows: a good on the belt is

transported until a presence sensor detects it, which triggers
the visual inspection of the object. The recognition system

is composed of two intelligent cameras that merge their
individual results in order to improve the robustness of

inspection. They capture an image and class the object
according to its brightness. The result of the classification

makes the routing mechanism (a diverter on the belt) to head
the object to the correct direction.
In the following, we describe in more detail the hardware

and software available in this plant and the design and
implementation of a control and SCADA application using H

and the H tools. It will be shown that, in spite of the apparent
simplicity of the plant, the heterogeneity can be quite high.

Hardware and software available

At the field level, the plant has the following sensors,

actuators, and controllers:
. A presence sensor (typically a photoelectric sensor

(Pepperl-Funchs, 2007)) that gives an on/off binary

output under the presence or not of an object on the belt.
. A conveyor drive, composed of a gearmotor and a starter

(MOVIMOT, 2007) attached to the pulley of the conveyor
belt. It has no reverse operation and no speed regulation.

. A pneumatic diverter (Kuhnke Airbox, 2007) that admits
an on/off signal for selecting one out of two lanes in the

last segment of the belt.
. Two intelligent B/W cameras with embedded processors

with capturing and basic image processing capabilities
(Siemens, 2001). Each one provides a two bits output

indicating the presence of a well terminated part (00), a

defective part (11), or a not-known (01) or error status (10).
. A PLC controller. For this case study we will consider an

out-of-catalog device in order to augment heterogeneity
and also illustrate the typical reuse of components in many

manufacturing environments. In our example it is the
modular Simatic S5-100U controller (Siemens, 2002).

These devices are connected through a heterogeneous
network. Non-programmable sensors and actuators

(presence, drive, diverter) are connected through an AS-i

bus to the PLC (through an AS-i module (AS-i, 2007)). The
controller is connected to the cameras as a master in a

Profibus-DP bus (Profibus, 2002) (a CP 5431 module for this
PLC is needed (Siemens, 2000)). This hard real-time bus will

also be used for connecting the field to the SCADA system.
Finally, the VS710 cameras chosen for this case of study

provide direct connection to Profibus-DP, but for increasing
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heterogeneity, we will consider their RS-232 connections

instead. So, we need a pair of Profibus-DP/RS-232 gateways

(Shauf, 2007) that set the cameras as slaves in the Profibus.
The enterprise level will contain a number of conventional

PCs. One of them will include a SCADA software. We will

consider that all these PCs share an Ethernet network, and

the SCADA computer will pass through to the field by means

of a Ethernet/Profibus-DP gateway (Applicom, 2007), being

seen as a master from the Profibus perspective.
Concerning the software, there are three programmable

devices in our example:
1 Both intelligent cameras include an Intel 486 processor

and run MS-DOS 6.22 (Microsoft, 2007). The

development is carried out on a different computer

using Visual Cþþ6.0 (Kruglinski, 1997) if C or C þ

þ languages are chosen, and the binary files transferred to

the embedded processors via RS-232 or the other

available connections.
2 The PLC has a ROM with a cyclic executive. The

programs can be written in AWL (Siemens, 2002), which

is a textual programming language similar to assembler.

They are developed in an external computer and

transferred to the PLC via a serial cable. Once there,

they can be stored in an EPROM.
3 The PC in charge of running the SCADA front-end will

run a MS-Windows XP OS (Microsoft, 2007), which can

be programmed in a variety of languages. This computer

will serve both as a development and as an execution

environment. We will choose JAVA (Sun, 2007) for

programming our front-end due to its graphical

capabilities and portability among platforms.

Designing the application with H

In the design of this application with the H language, we can

distinguish three different modules, intended for managing

each of the programmable devices: a PLC Control module, a

SCADA front-end module and an inspection module.

Figure 2 shows some example of the structural designs for

these modules. Notice the use of inheritance. The PLC

Control module has some hard-real time constraints in the

form of a cyclic task in charge of sequencing the shop plant.

Also notice that the SCADA Front-End receives information

from the plant asynchronously, without hard time

requirements (it is also able to act on the plant to stop or

start its operation under user demand). No dependency on a

given hardware or software is needed yet, and thus the

portability and reusability of these structural designs is

maximum.
The next step is to design the codifications for these

structures. This is when heterogeneity must be dealt with for

the first time. On the one hand, specific programming

languages must be selected. We will choose JAVA for the

SCADA Front-End, C for the embedded camera processors,

and AWL for the Simatic PLC. On the other hand, some

information on the particular platforms that are needed for

executing the codifications may be included. Notice that

through the use of H atoms, most of the portability/

heterogeneity parts of the codification will still remain

portable. Figure 3 shows some fragments of the

Figure 1 A case study of a shopfloor application. Top: Illustrative scheme of the process. Bottom: heterogeneous elements involved in the application
and their network connections
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codifications for the modules. The Inspection module

includes active replication for merging the results of both

cameras. The PLC main control service is deportabilized by

the CP 2433 module (the one that provides access to the AS-i

bus from the PLC), since it is used to access field devices that

do not contain modules.
In addition to, the design of modules and codifications, the

particular platforms involved in the application must be

enumerated for an implementation to be produced. We give a

table with the platforms of our example in Table II.
The application can now be designed by simply listing the

modules involved in the application (PLCControl, Inspection,

and SCADAFrontEnd) possible implementation is shown in

Figure 4.

Implementation, execution, debugging, and

maintainance with the H tools

From the designs proposed previously the H tools can

produce implementations. First of all, the implementation file

(Figure 4) serves as an index to collect all the modules and

codifications involved in the application. The H-apc tool is

intended to produce the source code of complete programs

from the codifications, including code for communications

and support of the H atoms. The source code produced from

each codification must be compiled/linked by some existing

software related to the codification language and to the

execution/hardware platform where the module’s codification

will be run. For example, for the Inspection modules’

codifications, the source code must be compiled/linked by MS

Visual Cþþ6.0 for constructing a console application

suitable for MS-DOS 6.22; for the SCADA Front-End, the

JAVA compiler must be executed to produce a JAVA bytecode

program. Once the codifications have been transformed into

executable, independent programs, they must be transferred

to the corresponding execution/hardware platforms.
The second H tool to use is the H-apx. It is in charge of

launching the codifications by following the sequence order

specified in the implementation. Our current version would

be able to do this from a centralized computer in a network

using TCP/IP communications. Further, extensions are

needed to include remote launching in PLCs.
Once the application is terminated (which can be

commanded also from the H-apx), the debugging results

can be collected and passed to the H-apl.

Figure 2 Structural designs of the fielddevice and controldevice abstract modules, and of the PLCControl module which inherits from the controldevice
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Finally, all the files involved in the application can be stored in

our BABEL web site (currently they are compacted into a

single file) for maintenance. This site also provides facilities to

check some dependency problems between modules and the

satisfaction of real-time requirements.

Conclusions and future work

We have presented in this paper a meta-programming

framework for coping efficiently with heterogeneity in

the shop-floor (as long as the shopfloor includes

programmable devices). We have developed a number of code

generators for H in the last years under the previous BABEL

framework, and this can be extended with an unbounded

number of generators in the future. Basically, the H tool that is

most affected by the inclusion of new particular platforms and

codification languages is the application constructor H-apc.

Thus, we have developed it based on several templates that can

be easily changed and added to the tool, in most cases without

recompiling it. Thus, heterogeneity in the future is guaranteed

to be coped with properly.

Figure 3 Codification designs of the PLCControlS5 and inspection modules
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Some features that are not dealt with currently in the H

metalanguage itself and may be subjected to further work in

the future are: migration mechanisms for codifications, higher

levels of specification/design (for example, layers over H that

are specialized in particular domains: manufacturing,

robotics, etc.) more complex and mathematically grounded

validation mechanisms, non-textual codification languages

(for example, Statecharts (Harel, 1987), reflexive properties

to handle the structure of the application from within the

application, automatic re-launching of failed codifications

with resuming of previous internal status, more sophisticated

asynchronous communications between modules, exception

handling at the design level, etc.

Note

1 Several specified priorities in H could be mapped into the

same actual priority of an operating system in the case that

the OS does not have enough support for real-time

performance, such as the MS Windows family of OSes.
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